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Abstract 

It is shown that taking the appropriate terms from a 
series expansion of the Shannon-Jaynes entropy of 
a density map subject to intensity constraints gives 
the standard direct methods structure factor probabil- 
ity distribution functions. The use of two maps, one 
to represent a native structure, the other to represent 
either heavy atoms or the number density of 
anomalous scatterers, and the application of a similar 
expansion to the total entropy of both maps rapidly 
gives either the integrated direct methods-single 
isomorphous replacement or the integrated direct 
methods-anomalous scattering probability densities. 

I. Introduction 

The techniques of probabilistic direct methods have 
been applied to pairs of isomorphous structures 
(single isomorphous replacement, SIR) (Hauptman, 
1982a; Karle, 1983, 1984b; Giacovazzo, Cascarano 
& Zeng Chao-de, 1988), and to structures containing 
anomalous scatterers (single-wavelength anomalous 
scattering, SAS) (Hauptman, 1982b; Giacovazzo, 
1983; Karle, 1984a, b, c), and give rise to probability 
distribution functions (p.d.f.s) for combinations of 
the two sets of structure factors involved, i.e. those of 
the native and derivative, or of the Bijvoet pairs, 
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respectively. Such distributions have been obtained 
both for two structure factors, which are trivial in the 
native-only case, but now relate the native and deriva- 
tive structure factors with the same index, or the two 
members of a Bijvoet pair, and for the six structure 
factors dependent on a given triplet of reciprocal 
space indices, from which conditional distributions 
of eight kinds of three-phase invariants may be found 
as functions of the six amplitudes. The implications 
of these relations have been examined in several 
contexts, and Karle (1986) and Fortier, Moore & 
Fraser (1985) give further references to these develop- 
ments. 

These results were obtained from the standard 
direct methods hypothesis of atoms randomly 
independently and a priori uniformly distributed 
throughout the unit cell, and follow in a similar way 
to the calculation ofp.d.f.s ofinvariants for the native- 
only case. Extensive calculations were needed to com- 
bine the contributions of each atom towards the over- 
all p.d.f, of the structure factors. The p.d.f, of a 
particular phase invariant was found by fixing the 
amplitudes at the measured values, and possibly also 
integrating out phases not involved in the invariant 
of interest. 

Much discussion of the theory of applying 
maximum entropy to the phase problem has taken 
place in recent years (e.g. Collins, 1982; Wilkins, 
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Varghese & Lehmann, 1983; Bricogne, 1984; Livesey 
& Skilling, 1985; Navaza, 1985). One aspect of these 
developments has been to interpret the entropy of a 
density map as the logarithm of the probability of 
the distribution of the atoms within the unit cell, and 
thus show the equivalence to direct methods when 
intensity constraints are applied (Bricogne, 1984). 
Arguments have, however, been made against such a 
literal interpretation (Gull & Skilling, 1984; Livesey 
& Skilling, 1985). Taking the appropriate marginals 
of this p.d.f. (Bricogne, 1984) gives p.d.f.s of phase 
invariants similar to direct methods (Hauptman, 
1975a; Fortier & Hauptman, 1977a, b; Giacovazzo, 
1980). Moreover, there have also been several com- 
putational demonstrations of the use of Maxent 
[this term will be used here in the specific context 
of the maximization of the Shannon-Jaynes entropy 
(Jaynes, 1968, 1982) of the spatial distribution of 
density within a map, subject to data constraints] 
with structure factor constraints, although its success- 
ful practical use in crystallography with intensity con- 
straints seems to have been limited to centrosym- 
metric space groups (Gull, Livesey & Sivia, 1987), or 
with SIR data using known heavy-atom positions 
(Bryan & Banner, 1987), where in both cases the 
problem is simplified to making a choice between 
alternative phases. SIR fibre data (Bryan, Bansal, 
Folkhard, Nave & Marvin, 1983; Marvin, Bryan & 
Nave, 1987) give the additional constraint of con- 
tinuity in reciprocal space, and have enabled a pre- 
viously unknown structure to be solved by Maxent. 

In a further calculation with SIR data (Bryan, 
1988), the assumption of known heavy-atom positions 
was not made. Instead, two independent maps were 
used to represent the native density and heavy-atom 
densities respectively, and their total entropy maxi- 
mized subject to the constraints imposed by the 
intensities of both the native and derivative structures. 
This method appears to bear the same relation to the 
integrated direct methods-SIR method as single-map 
Maxent does to conventional direct methods, so a 
formal proof of this is presented here, and addi- 
tionally it is shown that the integrated direct methods- 
SAS result can be found in a very similar way. As a 
preliminary, the methodology of Bricogne (1984) for 
the derivation of phase-invariant distributions from 
Maxent is examined, and it is shown that similar 
results can be achieved by taking the appropriate 
terms from a series expansion of the entropy. This 
method is then used for the derivations of the 
'integrated' distributions. 

and particular approximations of the Shannon- 
Jaynes entropy of a map, subject to constraints on its 
Fourier intensities. This method involves the two- 
stage process of (i) obtaining the map q which maxi- 
mizes the entropy subject to some structure factor 
constraints; followed by (ii) calculating the relative 
entropy between the final map p (subject to further 
intensity constraints) and q, and interpreting this rela- 
tive entropy as being proportional to the logarithm 
of the probability of the map p. Appropriate choice 
of the two constraint sets and of the terms taken from 
series expansions of both q as a function of the given 
structure factors, and of p about q, then gives the 
phase invariant p.d.f.s. 

For the purposes of this paper, a simpler treatment, 
that of a series expansion of the entropy around a 
uniform map, allows the required structure factor 
distributions to be obtained in a single step. When 
applied to the SIR or SAS problems, the expansion 
to third order may be compared directly with the 
expressions of Hauptman (1982a, b) and of 
Giacovazzo (1983). The initial work of Hauptman 
(1982a) calculated the distributions in terms of zero- 
angle atomic scattering factors, but recently 
Giacovazzo et al. (1988) have extended these results 
to allow for the wavelength dependence. Here, as the 
main purpose is to show that the distribution of 
invariants may be derived via the maximum entropy 
principle, the simplifying assumption of equal point 
atoms will be made. Unfortunately, the entropies, 
phase probabilities and relationships between 
isomorphous structures are most conveniently written 
in terms of unitary (U), normalized (E) and ordinary 
structure factors (F) respectively, so the scalings, with 
N equal atoms of scattering factor f, F = (Nf2)1/2E = 
NfU will often be needed. The inclusion of 
wavelength dependent atomic scattering factors, 
instead of the assumption of point atoms, would of 
course also make these relations depend on 
wavelength. 

If p(x), ~p (x )d3x= l ,  represents a normalized 
density map in a unit cell of volume ~V, so that Np(x) 
is the number density of atoms at x, the Shannon- 
Jaynes entropy of p relative to a given prior map 
m(x) is (Jaynes, 1968) 

S ( p ; m ) = - ~ p ( x ) l o g [ p ( x ) / m ( x ) ] d a x .  (1) 

Assuming a uniform prior re(x) and expanding p(x) 
about the uniform map, with p(x)=  (1/°V)[1 + u(x)], 
gives 

2. Structure factor distributions 
by series expansion of entropy 

Bricogne (1984) has given a very complete discussion 
of the relation between probabilistic direct methods 

S =  (1 /~ )  S [1 + u(x)]log[1 + u(x)] d3x, 

= -(1/°//') j" {½u(x)2-~u(x) 3 + . . .  

+ [ ( - )~ / r ( r  - 1) ]u(x) ~} d3x. (2) 



674 MAXIMUM ENTROPY DERIVATION OF PROBABILITY DISTRIBUTIONS 

If we write u(x) in terms of its Fourier transform, 
u(x) =~k Uk exp(2wix, k), this becomes 

f ~-' UkUi exp [27fix. (k+l)]  d3x 
1 

2°//̀  kl 

if +~---~ ~ UkUiUmexp[27rix.(k+l+m)]d3x+ "'" 
klm 

q r~ - - - ] i~  E 1-[gh, exp 2rrix.Y'hj  dax. 
hj,j = 1 ..... r j j 

(3) 

The integrations give ~ x  3 functions, so, if we change 
to amplitude and phase, with U = V exp i¢, 

s=-'E v2+-  E 
k klm 

k+ i+m=0  

Vk V~ Vm exp i(~pk + q0, + (~Om) 

( ) + ' " + r ( ~ - - l - )  Y'. I'IVh, exp i j~h, • 
h j d =  l . . . . .  r j 

Yjhj=O 

(4) 

Since N~/2U-  E = O(1), the sizes of the terms in this 
series decrease as N -'/2. 

The standard combinatorial argument (Gull & 
Daniell, 1978; Bricogne, 1984) for the derivation of 
the entropy uses Stirling's approximation to obtain 
NS as an asymptotic approximation to the logarithm 
of the probability of N atoms being so distributed as 
to give the normalized density p. Thus exp (NS) gives 
an asymptotic approximation to the probability of 
the density p, which by (4) may be expressed as a 
function of the structure factors corresponding to p. 

From this result, we wish to obtain the marginal 
distributions of specific r-tuplets of structure factors, 
which in principle is performed by integrating out all 
the other structure factors, a rather complicated task. 
However, by taking the expansion only as far as the 
N -1/2 term, we obtain, with IEI = R, 

P - e x p  [ - ½ ~  R~+(1/6N 1/2) 

X klmE RkRi Rm exp i(~Ok + ~0~ + ~ m )  ]. 
k+l+m=O 

(5) 

The integration to give the marginal distribution of 
a single triplet invariant can be performed to 
O(N -1/2) by the usual method (e.g. Hauptman, 
1975a, b, 1982a) of expansion of the exponential 
containing the N -1/2 term, integration, and the 
expansion of the logarithm in the equality x =  
exp(logx). Since a given klm triplet, with k + l +  
m=0,  has six contributions from the summation 
in the third order term plus a Friedel symmetric 

term, the result is 

P(Ek, E,, Em) OC exp [-(R~, + R~ + R2m) 

+2N-1/2RkR~Rm cos (~pk + ¢p~+ ~Pm)]- 
(6) 

Changing from d2E to RdRd¢  then gives the familiar 
structure factor triplet p.d.f. The result that, to third 
order, a triplet marginal of S is maximized for fixed 
amplitudes if q~k+~+q~m=0, k + l + m = 0 ,  was 
noticed by Bryan (1980), although its significance in 
crystallography was not. 

Further terms in (4) should yield distributions of 
higher invariants, with the selection of terms being 
guided by the neighbourhood principle (Hauptman, 
1977), or phasing shells (Giacovazzo, 1980, pp. 303- 
304). An rth order term ( r>2) ,  with indices {h~, 
i= 1 , . . . ,  r; ~h~=0} ,  will appear r! times in the 
summation in (4), so the product of r structure factors 
will have a net coefficient of ( - ) r -12( r -2) !  For r= 
4, 5, 6 these coefficients are seen to agree with those 
of the first neighbourhood for the quartet, quintet 
and sextet structure factor distributions (Hauptman, 
1975a; Fortier & Hauptman, 1977a, b), evaluated for 
the particular case of equal atoms. There are some 
discrepancies, for reasons yet to be clarified, in the 
coefficients for some of the second neighbourhood 
terms, although these particular terms disappear 
when the conditional p.d.f, of the phase invariant is 
evaluated (Hauptman, 1975b; Giacovazzo, 1980, pp. 
307-310; Hauptman & Fortier, 1977a, b). 

3. Phase invariants by Maxent 
with SIR or SAS data 

Hauptman (1982a, b), Karle (1983, 1984a, b, c) and 
Giacovazzo (1983) have shown that doublet and trip- 
let phase invariant p.d.f.s can be derived when 
intensity data are available either for an isomorphous 
pair, or when anomalous scatterers are present. Eight 
such triplet invariants exist, where each structure 
factor may be either a native or a derivative (in SIR), 
or either of the Bijvoet pair (SAS). These calculations 
rely on the usual strategy for the derivation of distri- 
butions of structure factors: the combination of the 
contributions to the structure factors from a number 
of independently distributed atoms. The added com- 
plication for the SIR/SAS case is that the structure 
factors now have contributions from two species of 
atoms. Although Hauptman's results are for struc- 
tures which are isomorphous in a rather general sense, 
the numerical results presented (Hauptman, Potter & 
Weeks, 1982; Fortier, Weeks, & Hauptman, 1984a) 
pertain to the more usual case of straightforward 
heavy atom addition, which will therefore be dealt 
with here. 

To apply Maxent to these problems, a separate 
map is used to define the distribution of each species 
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of atoms, so the p.d.f, of an invariant depends on the 
total entropy of both maps, subject to the data con- 
straints. It is important, though, to represent the cor- 
rect quantities by the density maps. There have been 
many criticisms of Maxent in the sense that it can 
only reconstruct real positive densities, whereas in 
some applications the physical quantity of interest 
may be negative or complex, for a reconstructed wave 
front, say, or, as here, complex scattering coefficients. 
The correct way to use Maxent (Skilling & Gull, 1984) 
in such problems is to have the map represent the 
number density of objects, necessarily positive, which 
may be imaged via physical quantities that may them- 
selves also be real and positive, but may be complex, 
quaternion, or whatever. Thus, for the anomalous 
case one map represents the number density of 
anomalous scatterers, and the complex scattering fac- 
tor is applied to the Fourier transform of this number 
density to give the correct contribution to the total 
structure factors. The same approximations as in § 2 
will then give the marginal p.d.f.s of the structure 
factors of interest. 

To demonstrate this process, the relations for the 
SIR doublet and triplet and for the SAS doublet will 
be derived for the case of identical native atoms and 
a single type of replacement atom. Higher order 
invariants may be found by the same methods, as 
indicated in § 2 for the native case. 

3.1. Preliminary definitions 

To preserve notation in the two applications, the 
total structure will be defined as the sum of two parts, 
one representing the native structure, and the second 
an 'additional' structure, representing the heavy 
atoms for SIR or the anomalous scatterers for SAS. 
Quantities for the native structure will be unsub- 
scripted, those for the additional structure subscripted 
with a, and those for the total structure with t, so the 
native structure is composed of N identical atoms of 
scattering factor f, the additional structure N~ atoms 
of scattering factor f . .  with N, = N+ N... The struc- 
tures are represented by maps of the number density 
of atoms, Np(x) and Nap.(x), where p and p. are 
each normalized to unity. The total entropy of both 
maps can be written as the weighted sum of the 
entropies of the individual maps, using the usual laws 
(Shannon & Weaver, 1949). Thus 

S(p; p,,) = ( N /  Nt)S(p) + ( N,,/ N,)S(p,,) + S( N, N,~). 
(7) 

The third term in (7), given by 

S(N, N . , ) = - ( N / N t )  log(N/N,) 

- ( N . /  N,) log(N./ N,), 

is the entropy of the distribution of the numbers of 
atoms between the two maps, and is constant if the 
numbers of atoms of each type are known, which is 

the case here, as the native and replacement atoms 
do not transmute. With P = exp(NtS), to third order, 
using (4) and (5), one finds 

log P = -½ E NI Ukl 2 + Nal U,,kl 2 
k 

+~ Y~ NUkU~Um+ N,,UakU,~.U,,m. (8) 
k+l+m=0 

In the following, reciprocal space indices will be 
omitted except where necessary. 

3.2. Doublet and triplet phase invariants with SIR data 

Isomorphism is imposed by setting Ft=F+F,,, 
where F = NfU, F, = No f,, U,. Let ~ be the phase of 
Ft, so the second order term in (8) for one Friedel 
pair becomes 

N IF[2 - N~ [Ft _ FI 2 
( Nf) 2 ( Nafa) 2 

1 [Nf2+Nj2aIFI2+IF, I2 
- N ~  Nf: 

-21FI [F,[ cos (~o - q,) ] 

1 
- l_o,2[IEI2+lE,12-2alEIIE, Icos( o-O)], 

(9) 

which is seen to be the exponent in equation (2.4) of 
Hauptman (1982a), with a 2 o = a ~ = N f  2, Ceo2 = 
Nf2+ N j  2, a=(a2o/ao2) 1/2, F=.,.1/2r; -20 .-- and Ft = 
...1/2 r7 
tx02 J-'t" 

The third order term for one klm combination from 
(8), upon substitution for F~ and application of the 
x6 multiplicity for permutations of the summation 
indices, is 

( 1  1 ) 
-2 3" FkF, Fm N2f 3 N . fa  

1 
+ ~ f 3  [ FtkF, Fm + p erms 

-(F,  kFaF,.+perms)+ F, kVaF, m], (10) 

where 'perms' denotes the three combinations of the 
indices with the native or the derivative structure 
factors. The change to normalized structure factors 
gives coefficients for the four types of terms of 

8 o -   f.3 N (Nf2).3/2 - (N2a)  - N 2 f )  -- A/1/2/V2 f3 , 

Nf2( N l  + Nj ) 
8 1 - -  2 3 ' N.,f., 

N, /2 f (Nf  2 + N.f2 ) (11 ) 
8 2  ~ 2 '3 , N..f~ 

( N f  2 + N a f 2 )  3/2 

8 2 -  2 3 N,.f'. 
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The phases of the various terms are Hauptman's 
phase invariants, and changes of variable from d2F 
to IFId~p dlF [ give, together with the doublet terms, 
equation (3.4) of Hauptman (1982a), with the /3; 
coefficients evaluated for equal atoms. Clearly there 
is no obstacle to deriving quartet/second neighbour- 
hood relations, except that 16 quartet and 8 x 3 = 24 
triplet terms will be involved. 

3.3. Doublet  phase invariants with S A S  data 

The SAS result follows in a similar way. The struc- 
ture factors of the maps are rewritten in terms of the 
Bijvoet pair for the total density. If the anomalous 
scatterers have a scattering factor f ,  e ;~, f ,  real, the 
Bijvoet pair is 

F + = N f U +  Nof~Ua e ~, 
(12) 

F -  N f U *  + Nof~ U* i~ = e , 

and hence 

F + e - i 6 -  F - *  e i~ 
U _ 

N f ( e - i ~ _ e , ~ )  , 

F + - F - *  
U,, - No fa (e ;8_e_ i8  ) . (13) 

Writing F + = A e ~'°, F -  = B e ;~' and substituting in the 
second order term of (8), we obtain 

log P = { - (A  2 + B2)( Xof~  + N f  2) 

+ 2 A B [ N o f ~  cos(~p + $ - 26) 

+ Nf2 cos (q~ + $)]} 

x { 4 N N o f 2 f ~  sin 2 6} -1 

- R 2 - S 2 + 2 X R S  cos (9 + ~ + ~:) 
- l _ X 2  , ( 1 4 )  

where 

tan ~ = - N o f  2 sin 2 6 / ( N f 2 +  N j ~  cos 26), 

a = N f 2 +  N o f ] ,  

2 4 X = ( N2f4+ N a f a  + 2mxof2f2a cos 6)1/2/o~, 

and R = A / a  1/2 and S =  B / a  u2 are the normalized 
amplitudes. Equation (14) may be compared with the 
exponent of equation (2.10) of Hauptman (1982b), 
or equation (4) of Giacovazzo (1983). In exactly the 
same way, the p.d.f, of the triplet pairs can be found, 
but the very extensive coefficients are omitted here. 
Note that (12) implicitly selects the enantiomorph by 
relating the sign of the anomalous phase change to 
the + / -  choice. It is for this reason that a non-zero 
estimate of the ~ + ~ invariant is produced, and not 
that a poor estimate of ~: is used, as has been stated 
by Fortier, Fraser & Moore (1986). There is thus only 
a twofold ambiguity in the solution, not an eightfold, 
which explains why the results of Fortier, Fraser & 

Moore (1986) are clustered in two groups if the distri- 
bution of invariants is sharp. Indeed, their Fig. 2 is 
misleading, as the interpretation depends on the par- 
ticular (positional) phase of the anomalous substruc- 
ture compared with the normal. 

4.  D i s c u s s i o n  

It has been shown that the integrated direct methods- 
SIR and direct methods-SAS structure factor distri- 
butions result also from an approximation of the 
entropy of the two-map density. The derivations here 
have assumed equal atoms within each set. In prin- 
ciple, the extension to the general case would be as 
follows, although the details have yet to be worked 
out. A separate ensemble is introduced for each 
atomic species, and the total entropy evaluated as the 
sum of the entropies of the individual ensembles, by 
the appropriate extension of (7). Consider first the 
native-only case, and suppose the ith ensemble con- 
tains ?4,- atoms of scattering factor f ,  with unitary 
structure factor U;. The marginal probability of the 
native structure factors Fh is evaluated by integration 
of exp ( N t S )  over all the U;, subject to the condition 
F = ~; N ~ U ~ ,  which could be performed by the usual 
methods of characteristic functions (e.g. Klug, 1958). 
The application to the isomorphous case is clear; 
there will be two linear combinations of the U's that 
give observables, so integration over the U;'s subject 
to two constraints gives the joint probability of both 
the native and derivative structure factors. 

Hauptman (1982a, b) and Giacovazzo (1983) sug- 
gest that the two and six structure factor p.d.f.s should 
be exploited by fixing the amplitudes at the measured 
values and integrating out all but one of the invariants, 
thus giving the marginal distributions for each phase 
invariant. These would then be exploited in a phasing 
step to deduce all the phases from some starting set, 
in a similar way to the usual native-only methods. 
The Maxent approach allows the two maps to be 
calculated directly, and automatically takes into 
account the relations between phases to all orders. 
Bricogne (1984) gives a more complete discussion of 
these points in the native-only context, most of which 
is applicable here. The question as to whether the 
underlying assumption behind both probabilistic 
direct methods and this formulation of Maxent is the 
best criterion has, however, not yet been answered; 
i.e. whether the a priori assumption of uniformity and 
independence of the distribution of atoms is indeed 
appropriate, or whether it is an inadequate descrip- 
tion of the complexity of molecular, and particularly 
macromolecular, structures, and further assumptions, 
perhaps involving density correlations (Bryan, 1986), 
are needed. 

Analysis of both native and heavy atom maps from 
the point of view of a priori uniformity means that 
the very important knowledge that the heavy atom 
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distr ibution consists of  a few distinct atoms is ignored. 
Indeed,  if  the data are of  sufficient quali ty for these 
procedures to be appl icable ,  it is very likely that the 
difference Patterson funct ion can be solved for the 
heavy atom posit ions anyway,  making the full two- 
map treatment  unnecessar i ly  complicated.  Not sur- 
prisingly, it has been noted (Fortier, Moore & Fraser, 
1985; Karle,  1986) that introducing informat ion  on 
heavy atom posit ions improves the accuracy of  the 
calculated phase invariants.  The corresponding 
Maxent  calculat ion has been recently reported (Bryan 
& Banner,  1987), and leads directly to a solution for 
the electron density, whereas a direct methods 
approach  gives the phase invariants,  to which a fur- 
ther procedure  must  be appl ied  to give the phases 
themselves. 

The Maxent  approach  has several further advan- 
tages over that of  direct methods.  In practical calcula- 
tions, uncertaint ies  in the data can be al lowed for at 
the outset by suitable weighting in the X 2 statistic 
(Bryan & Banner,  1987), a l though the formulat ion in 
§ 3 deals with exact intensity constraints. If  the major  
heavy atom sites have been found by difference Patter- 
son methods,  these may be used to give a prior for 
the heavy atom map,  and hence possible minor  sites 
may be found during the Maxent  calculation. As 
many  data sets as are available,  perhaps of varying 
quality and  resolution ranges, can all be incorporated 
into a X 2 statistic, whereas the direct methods  
approach would  require the distr ibutions of  the 
invariant  to be derived for each combina t ion  of data 
indiv idual ly  (Fortier, Weeks, & Hauptman,  1984b). 
Moreover, space group effects are taken into account 
s imply by defining the entropy on the asymmetr ic  
unit  of  the map  and using a space group specific 
Fourier  t ransform to give the unique structure factors 
for use in the X 2 test. A successful demonstra t ion of 
the full double -map procedure using Maxent  directly 
has also been per formed (Bryan, 1988), using simu- 
lated native and  SIR data. It remains to be seen 
whether  the same method can be appl ied to experi- 
mental  data sets, with at tendant  problems of  noise, 
scaling or possible non- isomorphism.  

References 

BRICOGNE, G. (1984). Acta Cryst. A40, 410-445. 
BRYAN, R. K. (1980). Maximum Entropy Image Processing. PhD 

thesis. Univ. of Cambridge, England. 

BRYAN, R. K. (1986). Paper presented at the Sixth Workshop on 
Maximum Entropy and Bayesian Methods, Univ. of Seattle, 
WA, 5-8 August. (Proceedings to be published by Cambridge 
Univ. Press.) 

BRYAN, R. K. (1988). Scanning Microsc. Suppl. In the press. 
BRYAN, R. K. & BANNER, D. W. (1987). Acta Cryst. A43, 556-564. 
BRYAN, R. K., BANSAL, M., FOLKHARD, W., NAVE, C. & MAR- 

VIN, D. A. (1983). Proc. Natl Acad. Sci. USA, 80, 4728-4731. 
COLLINS, D. M. (1982). Nature (London), 254, 49-51. 
FORTIER, S., FRASER, M. E. & MOORE, N. J. (1986). Acta Cryst. 

A42, 149-156. 
FORTIER, S. & HAUPTMAN, H. (1977a). Acta Cryst. A33, 572-575. 
FORTIER, S. 8£ HAUPTMAN, H. (1977b). Acta Cryst. A33, 694-696. 
FORTIER, S., MOORE, N. J. & FRASER, M. E. (1985). Acta Cryst. 

A41, 571-577. 
FORTIER, S., WEEKS, C. M. & HAUPTMAN, H. (1984a). Acta 

Cryst. A40, 544-548. 
FORTIER, S., WEEKS, C. M. & HAUPTMAN, H. (1984b). Acta 

Cryst. A40, 646-651. 
GIACOVAZZO, C. (1980). Direct Methods in Crystallography. 

London: Academic Press. 
GIACOVAZZO, C. (1983). Acta Cryst. A39, 585-592. 
GIACOVAZZO, C., CASCARANO, G. & ZENG CHAO-DE (1988). 

Acta Cryst. A44, 45-51. 
GULL, S. F. & DANIELL, G. J. (1978). Nature (London), 272, 

686-690. 
GULL, S. F., LIVESEY, A. K. & SIVIA, D. S. (1987). Acta Cryst. 

A43, 112-117. 
GULL, S. F. & SKILLING, J. (1984). In Indirect Imaging, edited 

by J. A. ROBERTS, pp. 267-279. Cambridge Univ. Press. 
HAUPTMAN, H. (1975a). Acta Cryst. A31,671-679. 
HAUPTMAN, H. (1975b). Acta Cryst. A31,680-687. 
HAUPTMAN, H. (1977). Acta Cryst. A33, 568-571. 
HAUPTMAN, H. (1982a). Acta Cryst. A38, 289-294. 
HAUPTMAN, H. (1982b). Acta Cryst. A38, 632-641; corrigenda 

Acta Cryst. (1988). A42, 134. 
HAUPTMAN, H. & FORTIER, S. (1977a). Acta Cryst. A33, 575-580. 
HAUPTMAN, H. & FORTIER, S. (1977b). Acta Cryst. A33, 697- 

701. 
HAUPTMAN, H., POTTER, S. & WEEKS, C. M. (1982). Acta Cryst. 

A38, 294-300. 
JAYNES, E. T. (1968). IEEE Trans. SCC-4, 227-241. 
JAYNES, E. T. (1982). Proc. IEEE, 70, 939-952. 
KARLE, J. (1983). Acta Cryst. A39, 800-805. 
KARLE, J. (1984a). Acta Cryst. A40, 4-11. 
KARLE, J. (1984b). Acta Cryst. A40, 374-379. 
KARLE, J. (1984c). Acta Cryst. A40, 526-531. 
KARLE, J. (1986). Acta Cryst. A42, 246-253. 
KLUG, A. (1958). Acta Cryst. 11, 515-543. 
LIVESEY, A. K. & SKILLING, J. (1985). Acta Cryst. A41,113-122. 
MARVIN, D. A., BRYAN, R. K. & NAVE, C. (1987). J. Mol. Biol. 

193, 315-343. 
NAVAZA, J. (1985). Acta Cryst. A41, 232-244. 
SHANNON, C. E. & WEAVER, W. (1949). The Mathematical Theory 

of Communication. Urbana: Univ. of Illinois Press. 
SKILLING, J. & GULL, S. F. (1984). SIAM Am. Math. Soc. Proc. 

14, 167-189. 
WILKINS, S. W., VARGHESE, J. N. & LEHMANN, M. S. (1983). 

Acta Cryst. A39, 49-60. 


